Magnetic domain formation of La_{0.6}Sr_{0.4}MnO₃ epitaxial thin films observed by XMCD-PEEM

Toshiyuki Taniuchi¹, Ryutaro Yasuhara¹, Hiroshi Kumigashira¹, Masato Kubota², Hiroyuki Okazaki^{3,4}, Takanori Wakita³, Takayoshi Yokoya^{3,4}, Kanta Ono², Masaharu Oshima¹, Mikk Lippmaa⁵, Masashi Kawasaki⁶, and Hideomi Koinuma⁷

¹Department of Applied Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan

²Institute of Materials Structure Science, KEK, Tsukuba 305-0801, Japan ³Research Laboratory for Surface Science, Faculty of Science, Okayama University, Okayama 700-8530, Japan

⁴*The Graduate School of Natural Science and Technology,Okayama University* 3-1-1, Tsushima-naka, Okayama, 700-8530 Japan

⁵Institute for Solid State Physics, The University of Tokyo, Kashiwa 277-8581,

Japan

⁶Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan National Institute for Materials Science, Tsukuba 305-0047, Japan

Spin tunnel junctions with half-metallic manganites have attracted great attention because of the application to the magnetoelectronic devices using their huge magnetoresistance. In order to determine the magnetic structure directly, we have performed the observation of the magnetic domain formation of the ferromagnetic La_{0.6}Sr_{0.4}MnO₃ (LSMO) epitaxial thin films grown on the stepped SrTiO₃ (001) substrates. The magnetic domains were imaged using the PEEM with x-ray magnetic circular dichroism (XMCD) which is installed at BL25SU of SPring-8. Figure 1 shows the magnetic images of the LSMO thin films with the thickness of 20 and 120 nm. We have found that the magnetic domains show a stripe structure elongated along the step directions, which is ascribed by the uniaxial magnetic anisotropy induced by the step structures. In the thicker films, however, we have observed not only the stripe magnetic domains but also the domains with the magnetizations along a different axis from the step direction, as

shown by the arrows in Fig. 1(b). These domains are considered to exhibit the biaxial anisotropy which originates from magneto-crystalline anisotropy with easy axes along the [110] direction. These results suggest that the step-induced magnetic anisotropy arise at the surfaces and/or the interfaces, since the relative contribution of step-induced magnetic the anisotropy decreased with increasing film thickness.

μm

 $5 \ \mu m$ $5 \ \mu m$ Figure 1. The magnetic images of the La_{0.6}Sr_{0.4}MnO₃ thin films. The thicknesses are (a) 20 nm and (b) 120 nm, respectively.