Photoelectron emission microscopy (PEEM) on bilayer manganite La_{1.1}Sr_{1.9}Mn₂O₇

M. Kubota¹, T. Taniuchi², M. Oshima², H. Akinaga³, and K. Ono¹

¹Photon, Factory, Institute of Materials Structure Science, KEK, Tsukuba, 305-0801, Japan

²Department of Applied Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan

³Nanotechnology Research Institute (NRI), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8562, Japan

Perovskite manganites have been intensively studied for their intriguing features which would be applicable to spintronic device such as a colossal magnetoresistance. Among them, it is well known that bi-lyaered $La_{2-2x}Sr_{1+2x}Mn_2O_7$ exhibits the competition between the ferromagnetic interaction and antiferromagnetic interaction along the c axis, reflecting the two-dimensionality. Charges are weakly localized within the ferromagnetic (FM) MnO₂ layers in the A-type AFM order, but is destabilized by the three-dimensional FM order. It is recognized that a local lattice distortion strongly influences on magnetism and transport phenomena in the complex electronic materials.

We report the PEEM measurement on $La_{1.1}Sr_{1.9}Mn_2O_7$ in order to understand the underlying electronic structure of the matrix. We have demonstrated that PEEM with synchrotron radiation is an useful tool to probe an electronic structure image and a local strain field at an element-selective site; stripe-like domains were observed at the Mn L₂ edge.